Metode Greedy dan Divide & Conquer

Nama : Ahmad Fuad Muhadzib
NPM : 5C414773
Kelas : 1IA24
Metode Greedy
Metode
greedy adalah metode yang digunakan untuk memecahkan persoalan optimasi,
ada 2 macam persoalan optimasi, yaitu maksimasi dan minimasi, artinya
dengan metode greedy kita bemaksud mencari solusi terbaik, yaitu solusi
yang benilai minimum atau maksimum dari sekumpulan alternatif solusi
yang ada.
arti kata greedy sendiri adalah RAKUS, namun maksud dari metode grredy adalah kita melihat solusi optimal lokal, atau solusi optimal yang tampak didepan mata, dengan harapan mendapatkan solusi optimal secara global atau secara keseluruhan
Contohnya adalah pada kasus penukaran uang, misalkan kita memiliki uang senilai 32 dan akan kita tukarkan dengan koin, uang koin pecahan yang tersedia adalah 1, 5, 10, 25, jika kita mengharapkan agar pecahan yang kita miliki sedikit mungkin maka kita bisa menggunakan metode greedy dengan cara memilih pecahan terbesar terlebih dahulu. mari kita lihat
uang 32.
pecahan 1,5,10,25
dengan metode greedy kita harus memilih pecahan terbesar terlebih dahulu yaitu 25, kemudian baru mengambil sampai sesuai dengan uang yang kita miliki.
yaitu= 25+5+1+1=32(4 koin)
sebenarnya ada beberapa alternatif solusi pemecahan masalah diatas sebagai berikut
32=1+1+1+1+...+1 (32 koin)
32=5+5+5+5+10+1+1 (7koin)
32=10+10+10+1+1 (5koin)
Dalam hal ini metode greedy berhasil mendapat kan hasil maksimal secara global atau secara keseluruhan dengan mengambil koin yang terbesar terlebih dahulu.
Namun ada kalanya metode greedy gagal mendapatkan solusi optimal, hal ini juga dikarenakan oleh sifat metode greedy itu sendiri yang memperhatikan keuntungan lokal(diawal) tanpa memperhatikan kemungkinan solusi yang lain, contoh:
Uang yang ditukar sebesar 7
Koin yang tersedia 5,4,3, dan 1
jika kita menukarkan uang tersebut dengan metode greedy maka kita harus mengambil pecahan terbesar lebih dulu yaitu 5, baru kemudian kita memilih pecahan berikutnya hingga genap berjumlah 7
7=5+1+1 (3koin)
alternatif solusi
7=4+3 (2koin)
pada contoh diatas jelas terlihat bahwa metode greedy gagal memberikan solusi optimal.
Untuk mata uang dollar AS, euro Eropa, dan crown Swedia, algoritma greedy selalu memberikan solusi optimum. Misalnya untuk menukarkan $6,39 dengan uang kertas (bill) dan koin sen (cent), kita dapat memilih:
•Satu buah uang kertas senilai $5
•Satu buah uang kertas senilai $1 ($5 + $1 = $6))
•Satu koin 25 sen ($5 + $1 + 25c = $6,25)
•Satu koin 10 sen ($5 + $1 + 25c + 10c = $6,35)
•Empat koin 1 sen ($5 + $1 + 25c + 10c + 1c + 1c + 1c + 1c = $6,39)
Bagaimana dengan mata uang rupiah Indonesia?
Metode greedy dipakai dalam masalah
1.Optimal On tape Storage Problem
2.Knapsack Problem
3.Minimum Spanning Tree Problem
4.Shortest Path Problem
arti kata greedy sendiri adalah RAKUS, namun maksud dari metode grredy adalah kita melihat solusi optimal lokal, atau solusi optimal yang tampak didepan mata, dengan harapan mendapatkan solusi optimal secara global atau secara keseluruhan
Contohnya adalah pada kasus penukaran uang, misalkan kita memiliki uang senilai 32 dan akan kita tukarkan dengan koin, uang koin pecahan yang tersedia adalah 1, 5, 10, 25, jika kita mengharapkan agar pecahan yang kita miliki sedikit mungkin maka kita bisa menggunakan metode greedy dengan cara memilih pecahan terbesar terlebih dahulu. mari kita lihat
uang 32.
pecahan 1,5,10,25
dengan metode greedy kita harus memilih pecahan terbesar terlebih dahulu yaitu 25, kemudian baru mengambil sampai sesuai dengan uang yang kita miliki.
yaitu= 25+5+1+1=32(4 koin)
sebenarnya ada beberapa alternatif solusi pemecahan masalah diatas sebagai berikut
32=1+1+1+1+...+1 (32 koin)
32=5+5+5+5+10+1+1 (7koin)
32=10+10+10+1+1 (5koin)
Dalam hal ini metode greedy berhasil mendapat kan hasil maksimal secara global atau secara keseluruhan dengan mengambil koin yang terbesar terlebih dahulu.
Namun ada kalanya metode greedy gagal mendapatkan solusi optimal, hal ini juga dikarenakan oleh sifat metode greedy itu sendiri yang memperhatikan keuntungan lokal(diawal) tanpa memperhatikan kemungkinan solusi yang lain, contoh:
Uang yang ditukar sebesar 7
Koin yang tersedia 5,4,3, dan 1
jika kita menukarkan uang tersebut dengan metode greedy maka kita harus mengambil pecahan terbesar lebih dulu yaitu 5, baru kemudian kita memilih pecahan berikutnya hingga genap berjumlah 7
7=5+1+1 (3koin)
alternatif solusi
7=4+3 (2koin)
pada contoh diatas jelas terlihat bahwa metode greedy gagal memberikan solusi optimal.
Untuk mata uang dollar AS, euro Eropa, dan crown Swedia, algoritma greedy selalu memberikan solusi optimum. Misalnya untuk menukarkan $6,39 dengan uang kertas (bill) dan koin sen (cent), kita dapat memilih:
•Satu buah uang kertas senilai $5
•Satu buah uang kertas senilai $1 ($5 + $1 = $6))
•Satu koin 25 sen ($5 + $1 + 25c = $6,25)
•Satu koin 10 sen ($5 + $1 + 25c + 10c = $6,35)
•Empat koin 1 sen ($5 + $1 + 25c + 10c + 1c + 1c + 1c + 1c = $6,39)
Bagaimana dengan mata uang rupiah Indonesia?
Metode greedy dipakai dalam masalah
1.Optimal On tape Storage Problem
2.Knapsack Problem
3.Minimum Spanning Tree Problem
4.Shortest Path Problem
Divide and conquer
Algoritma Divide and Conquer merupakan algoritma yang sangat populer di dunia Ilmu Komputer. Divide and Conquer merupakan algoritma yang berprinsip memecah-mecah permasalahan yang terlalu besar menjadi beberapa bagian kecil sehingga lebih mudah untuk diselesaikan. Langkah-langkah umum algoritma Divide and Conquer :
- Divide : Membagi masalah menjadi beberapa upa-masalah yang memiliki kemiripan dengan masalah semula namun berukuran lebih kecil ( idealnya berukuran hampir sama ).
- Conquer : Memecahkan ( menyelesaikan ) masing-masing upa-masalah ( secara rekursif ).
- Combine : Menggabungkan solusi masing-masing upa-masalah sehingga membentuk solusi masalah semula.
Skema Umum Algoritma Divide and Conquer :



2. Penerapan Algoritma
2.1. Pemecahan Masalah Convex Hull dengan Algoritma Divide and Conquer
Pada penyelasaian masalah pencarian Convex Hull dengan menggunakan algoritma Divide and Conquer, hal ini dapat dipandang
sebagai generalisasi dari algoritma pengurutan merge sort. Berikut ini merupakan garis besar gambaran dari algoritmanya:
- Pertama-tama lakukan pengurutan terhadap titik-titik dari himpunan S yang diberika berdasarkan koordinat absis-X, dengan kompleksitas waktu O(n log n).
- Jika |S| ≤ 3, maka lakukan pencarian convex hull secara brute-force dengan kompleksitas waktu O(1). (Basis).
- Jika tidak, partisi himpunan titik-titik pada S menjadi 2 buah himpunan A dan B, dimana A terdiri dari setengah jumlah dari |S| dan titik dengan koordinat absix-X yang terendah dan B terdiri dari setengah dari jumlah |S| dan titik dengan koordinat absis-X terbesar.
- Secara rekursif lakukan penghitungan terhadap HA = conv(A) dan HB = conv(B).
- Lakukan penggabungan (merge) terhadap kedua hull tersebut menjadi convex hull, H, dengan menghitung da mencari upper dan lower tangents untuk HA dan HB dengan mengabaikan semua titik yang berada diantara dua buah tangen ini.


Permasalahan convex hull adalah sebuah permasalahan yang memiliki aplikasi terapan yang cukup banyak, seperti pada permasalahan grafika komputer, otomasi desain, pengenalan pola (pattern recognition), dan penelitian operasi. Divide and Conquer adalah metode pemecahan masalah yang bekerja dengan membagi masalah menjadi beberapa upa-masalah yang lebih kecil, kemudian menyelesaikan masing-masing upa-masalah tersebut secara independent, dan akhirnya menggabungkan solusi masing-masing upa-masalah sehingga menjadi solusi dari masalah semula.
Algoritma Divide and Conquer merupakan salah satu solusi dalam penyelesaian masalah convex hull. Algoritma ini ternyata memiliki kompleksitas waktu yang cukup kecil dan efektif dalam menyelesaikan permasalahan ini (jika dibandingkan algoritma lain). Selain itu juga, algoritma ini dapat digeneralisasi untuk permasalahan convex hull yang berdimensi lebih dari 3.
2.2. Persoalan Minimum dan Maksimum (MinMaks)
Persoalan : Misalnya diketahui table A yang berukuran n eleman sudah berisi nilai integer. Kita ingin menentukan nilai minimum dan nilai maksimum sekaligus di dalam table tersebut. Misalkan tabel A berisi elemen-elemen sebagai berikut :


Ukuran table hasil pembagian dapat dibuat cukup kecil sehingga mencari minimum dan maksimum dapat diselesaikan (SOLVE) secara lebih mudah. Dalam hal ini, ukuran kecil yang dipilih adalah 1 elemen atau 2 elemen.
Algoritma MinMaks :
1. Untuk kasus n = 1 atau n = 2,
SOLVE : Jika n = 1, maka min = maks = An. Jika n = 2, maka bandingkan kedua elemen untuk menentukan min dan maks.
2. Untuk kasus n > 2,
- DIVIDE : Bagi dua table A secara rekursif menjadi dua bagian yang berukuran sama, yaitu bagian kiri dan bagian kanan.
- CONQUER : Terapkan algoritma Divide and Conquer untuk masing-masing bagian, dalam hal ini min dan maks dari table bagian kiri dinyatakan dalam peubah min1 dan maks1, dan min dan maks dari table bagian kanan dinyatakan dalam peubah min2 dan maks2.
- COMBINE : Bandingkan min1 dan min2 untuk menentukan min table A, serta bandingkan maks1 dan maks2 untuk menentukan maks table A.
Salah satu cara optimasi yang bias kita lakukan adalah membagi bilangan decimal yang hendak diubah dengan angka 8 ( bukan 2 ). Di sinilah prinsip algoritma Divide and Conquer kita gunakan untuk melakukan optimasi. Kita pecah-pecah angka decimal yang akan kita gunakan dengan cara membaginya dengan angka 8 secara berulang. Angka-angka sisa pembagian yang kita peroleh kemudian kita ubah ke dalam bilangan biner sebelum kita gabungkan menjadi hasil jawaban.
Karena angka pembagi yang kita pakai adalah 8 (23), maka kita dapat mengurangijumlah pembagian yang kita lakukan menjadi ± 1/3 dari jumlah semula. Hal ini tentu saja akan sangat berpengaruh pada kinerja dan waktu yang diperlukan oleh computer mengingat proses pembagian merupakan salah satu proses yang cukup rumit.
Tentu saja optimasi ini harus kita bayar dengan menangani konversi bilangan octal ke biner. Akan tetapi jika kita gunakan teknik perbandingan ( tanpa harus melakukan konversi secara manual ), maka proses ini akan menjadi sangat cepat dan mudah. Penerapan algoritma ini adalah dengan menggunakan sintaks case of. Begitu juga dengan permasalahan pemakaian memori ( kompleksitas ruang ) yang lebih besar yang muncul akibat penggunaan algoritma rekursif. Karena pada proses rekursif-nya kita tidak banyak menggunakan variable yang memerlukan tempat yang begitu besar, maka hal ini bias kita abaikan. Dengan penggunaan optimasi ini, maka seharusnya proses konversi akan lebih cepat karena pemangkasan jumlah pembagian yang dilakukan.
Skema procedur utama Konversi dengan optimasi

Skema procedur rekursif dengan menerapkan Algoritma Divide and Conquer

Kompleksitas waktu algoritma :
T(n) = O(n/3)
dengan n menyatakan eksponen terkecil dari 2 yang mempunyai nilai 2n lebuh besar dari angka decimal
Algoritma konversi system bilangan dengan menggunakan algoritma dengan optimasi yang menerapkan algoritma Divide and Conquer lebih mangkus daripada algoritma konversi dengan metode pembagian sisa biasa jika dilihat dari segi kompleksitas waktunya. Hanya saja optimasi ini diimbangi dengan kenaikan pada kompleksitas ruangnya, meskipun pengaruhnya tidak sebesar optimasi yang kita lakukan.
2.4. Mencari Pasangan Titik yang Jaraknya Terdekat ( Closest Pair )
Persoalan : Diberikan himpunan titik, P, yang terdiri dari n buah titik, (xi,yi), pada bilangan 2-D. Tentukan jarak terdekat antara dua buah titik di dalam himpunan P. Jarak dua buah titik p1 = (x1, y1) dan p2 = (x2, y2) :

Penyelesaian dengan Algoritma Divide and Conquer :
a. Asumsi : n = 2k dan titik-titik diurut berdasarkan absis (x).
b. Algoritma Closest Pair :
– SOLVE : jika n = 2, maka jarak kedua titik dihitung langsung dengan rumus Euclidean.
– DIVIDE : Bagi titik-titik itu ke dalam dua bagian, PLeft dan PRight, setiap bagian mempunyai jumlah titik yang sama
– CONQUER :Secara rekursif, terapkan algoritma D-and-C pada masingmasing bagian.
– Pasangan titik yang jaraknya terdekat ada tiga kemungkinan letaknya :
- Pasangan titik terdekat terdapat di bagian PLeft.
- Pasangan titik terdekat terdapat di bagian PRight.
- Pasangan titik terdekat dipisahkan oleh garis batas L, yaitu satu titik di PLeft dan satu titik di PRight.
0 komentar